My Sanford Chart allows you secure online access to your personal health information and your child's health information. It's available anywhere you have internet access. There is no cost to you and registering is quick and simple.

Sign Up for My Sanford Chart

Skin Cancer Screening (PDQ®): Screening - Health Professional Information [NCI]

This information is produced and provided by the National Cancer Institute (NCI). The information in this topic may have changed since it was written. For the most current information, contact the National Cancer Institute via the Internet web site at http://cancer.gov or call 1-800-4-CANCER.

Skin Cancer Screening

Overview

Note: Separate PDQ summaries on Skin Cancer Prevention, Skin Cancer Treatment, and Levels of Evidence for Cancer Screening and Prevention Studies are also available.

Interventions

The only widely proposed screening procedure for skin cancer is visual examination of the skin, including both self-examination and clinical examination.

Benefits

In asymptomatic populations, the effect of visual skin examination on mortality from nonmelanomatous skin cancers is unknown. Further, the evidence is inadequate to determine whether visual examination of the skin in asymptomatic individuals would lead to a reduction in mortality from melanomatous skin cancer.

Magnitude of Effect: Not applicable (N/A).

Study Design: Evidence obtained from a single case-control study.
Internal Validity: Poor.
Consistency: N/A.
External Validity: N/A.

Harms

Based on fair though unquantified evidence, visual examination of the skin in asymptomatic individuals may lead to unavoidable increases in harmful consequences. These include complications of diagnostic or treatment interventions (including extensive surgery) and the psychological effects of being labeled with a potentially fatal disease. Another harmful consequence is overdiagnosis leading to the detection of biologically benign disease that would otherwise go undetected, and the possibility of misdiagnosis of a benign lesion as malignant.

Magnitude of Effect: Unknown.

Study Design: Opinions of respected authorities based on clinical experience, descriptive studies, or reports of expert committees.
Internal Validity: Fair.
Consistency: Multiple studies; small number of participants—no consistency.
External Validity: Fair.

Description of the Evidence

Background

Incidence and mortality

There are three main types of skin cancer:

  • Basal cell carcinoma.
  • Squamous cell carcinoma (together with basal cell carcinoma referred to as nonmelanoma skin cancer).
  • Melanoma.

Basal cell carcinoma and squamous cell carcinoma are the most common forms of skin cancer but have substantially better prognoses than the less common, generally more aggressive melanoma.

Nonmelanoma skin cancer is the most commonly occurring cancer in the United States. Its incidence appears to be increasing in some [1] but not all [2] areas of the United States. Overall U.S. incidence rates have likely been increasing for a number of years.[3] At least some of this increase may be attributable to increasing skin cancer awareness and resulting increasing investigation and biopsy of skin lesions. A precise estimate of the total number and incidence rate of nonmelanoma skin cancer is not possible, because reporting to cancer registries is not required. However, based on Medicare fee-for-service data extrapolated to the U.S. population, it has been estimated that the total number of persons treated for nonmelanoma skin cancers in 2006 was about 2,152,500.[3,4] That number would exceed all other cases of cancer estimated by the American Cancer Society for that year, which was about 1.4 million.[5]

Melanoma is a reportable cancer in U.S. cancer registries, so there are more reliable estimates of incidence than is the case with nonmelanoma skin cancers. In 2013, it is estimated that 76,690 individuals in the United States will be diagnosed with melanoma and approximately 9,480 will die of it. The incidence of melanoma has been increasing for at least 30 years.[4] From 2005 to 2009, melanoma mortality rates decreased in whites younger than 50 years by 2.8% per year in men and by 2.0 % per year in women. However, the rates have been increasing by 1.1% per year in white men aged 50 years and older, and have been stable in white women aged 50 years and older during this same time period.[4]

A study of skin biopsy rates in relation to melanoma incidence rates obtained from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute indicated that much of the observed increase in incidence between 1986 and 2001 was confined to local disease and was most likely caused by overdiagnosis as a result of increased skin biopsy rates during this period.[6]

Risk Factors

Epidemiologic evidence suggests that exposure to UV radiation and the sensitivity of an individual's skin to UV radiation are risk factors for skin cancer, although the type of exposure (high-intensity and short-duration vs. chronic exposure) and pattern of exposure (continuous vs. intermittent) may differ among the three main types of skin cancer.[7,8,9] In addition, the immune system may play a role in pathogenesis of skin cancers. Organ-transplant recipients receiving immunosuppressive drugs are at elevated risk of skin cancers, particularly squamous cell cancers (SCC). Arsenic exposure also increases the risk of cutaneous SCC.[10,11]

The incidence of melanoma rises rapidly in Caucasians after age 20 years. Fair-skinned individuals exposed to the sun are at higher risk. Individuals with certain types of pigmented lesions (dysplastic or atypical nevi), with several large nondysplastic nevi, with many small nevi, or with moderate freckling have a twofold to threefold increased risk of developing melanoma.[12] Individuals with familial dysplastic nevus syndrome or with several dysplastic or atypical nevi are at high (>fivefold) risk of developing melanoma.[12]

Accuracy of Making a Clinical Diagnosis of Melanoma

A systematic review of 32 studies that compared the accuracy of dermatologists and primary care physicians in making a clinical diagnosis of melanoma concluded that there was no statistically significant difference in accuracy. However, the results were inconclusive, owing to small sample sizes and study design weaknesses.[13] In addition, differentiating between benign and malignant melanocytic tumors during histologic examination of biopsy specimens has been shown to be inconsistent even in the hands of experienced dermatopathologists.[14] This fact undermines results of studies examining screening effectiveness and also may undermine the effectiveness of any screening intervention. Furthermore, this suggests that requesting a second opinion regarding the pathology of biopsy specimens may be important.[14]

Evidence of Benefit Associated With Screening

More than 90% of melanomas that arise in the skin can be recognized with the naked eye. Very often there is a prolonged horizontal growth phase during which time the tumor expands centrifugally beneath the epidermis but does not invade the underlying dermis. This horizontal growth phase may provide lead time for early detection. Melanoma is more easily cured if treated before the onset of the vertical growth phase with its metastatic potential.[15]

The probability of tumor recurrence within 10 years after curative resection is less than 10% with tumors less than 1.4 mm in thickness. For patients with tumors less than 0.76 mm in thickness, the likelihood of recurrence is less than 1% in 10 years.[16]

A systematic review of skin cancer screening examined evidence available through mid-2005 and concluded that direct evidence of improved health outcomes associated with skin cancer screening is lacking.[17]

However, this does not mean that skin cancers (whether melanoma or nonmelanoma) are unimportant or can be neglected without adverse consequences. When neglected, skin cancers can be disfiguring and/or cause death. Skin cancers are easily detected clinically and are often cured by excisional biopsy alone.

Various observational studies exploring the possibility that melanoma screening may be effective have been reported. An educational campaign in western Scotland, promoting awareness of the signs of suspicious skin lesions and encouraging early self-referral, showed a decrease in mortality rates associated with the campaign.[18] A case-control study of 650 cases (and 549 controls) diagnosed in Connecticut showed that skin self-examination was associated with reduced melanoma incidence. The authors estimated that monthly skin self-examination might decrease disease-specific mortality by 63%,[19] but the observed effects may have been the result of study biases, which frequently affect case-control study designs.[20]

A population-based trial using cluster randomization to determine the effect of skin screening on melanoma mortality was initiated in Queensland, Australia.[21] Intervention communities were randomly assigned to receive a 3-year program targeting adults older than age 30 years. The program consisted of:

  • Community education and promotion of self-screening.
  • General practitioner education about screening and training in the diagnosis of melanoma.
  • Free skin cancer screening clinics.

Matched control communities received usual care. Originally designed to include 44 matched communities followed for 15 years, the trial lost its funding after its initial pilot phase in 18 communities (population 63,035).[22] Although the pilot phase established feasibility of community-based programs, no health outcomes were reported. In the study, 16,383 whole-body skin examinations were reported in the intervention communities, resulting in a referral rate of 14.1% (18.2% for people older than age 50 years). Thirty-three melanomas were diagnosed, 13 of which were in situ. The estimated specificity for melanoma was 86.1%, with a positive predictive value (PPV) of 2.5%. The PPVs for squamous cell and for basal cell cancers were 7.2% and 19.3%, respectively. Negative screens were not followed up, and the sensitivity of skin examination was not reported.[23]

Evidence of Harm Associated With Screening

Harms have not been well studied or reported in quantitative terms. However, visual examination of the skin in asymptomatic individuals may lead to unavoidable adverse consequences. These include complications of diagnostic or treatment interventions (including extensive surgery) and the psychological effects of being labeled with a potentially fatal disease. Another harmful consequence is overdiagnosis leading to the detection of biologically benign disease that would otherwise go undetected, and the possibility of misdiagnosis of a benign lesion as malignant. (Refer to the Accuracy of Making a Clinical Diagnosis of Melanoma section of this summary for more information.)

References:

1. Athas WF, Hunt WC, Key CR: Changes in nonmelanoma skin cancer incidence between 1977-1978 and 1998-1999 in Northcentral New Mexico. Cancer Epidemiol Biomarkers Prev 12 (10): 1105-8, 2003.
2. Harris RB, Griffith K, Moon TE: Trends in the incidence of nonmelanoma skin cancers in southeastern Arizona, 1985-1996. J Am Acad Dermatol 45 (4): 528-36, 2001.
3. Rogers HW, Weinstock MA, Harris AR, et al.: Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol 146 (3): 283-7, 2010.
4. American Cancer Society.: Cancer Facts and Figures 2013. Atlanta, Ga: American Cancer Society, 2013. Available online. Last accessed March 13, 2013.
5. American Cancer Society.: Cancer Facts and Figures 2006. Atlanta, Ga: American Cancer Society, 2006. Also available online. Last accessed February 15, 2013.
6. Welch HG, Woloshin S, Schwartz LM: Skin biopsy rates and incidence of melanoma: population based ecological study. BMJ 331 (7515): 481, 2005.
7. Koh HK: Cutaneous melanoma. N Engl J Med 325 (3): 171-82, 1991.
8. Preston DS, Stern RS: Nonmelanoma cancers of the skin. N Engl J Med 327 (23): 1649-62, 1992.
9. English DR, Armstrong BK, Kricker A, et al.: Case-control study of sun exposure and squamous cell carcinoma of the skin. Int J Cancer 77 (3): 347-53, 1998.
10. Thomas VD, Aasi SZ, Wilson LD, et al.: Cancer of the skin. In: DeVita VT Jr, Hellman S, Rosenberg SA, eds.: Cancer: Principles and Practice of Oncology. Vols. 1 & 2. 8th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2008, pp 1863-87.
11. Le Mire L, Hollowood K, Gray D, et al.: Melanomas in renal transplant recipients. Br J Dermatol 154 (3): 472-7, 2006.
12. Gandini S, Sera F, Cattaruzza MS, et al.: Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer 41 (1): 28-44, 2005.
13. Chen SC, Bravata DM, Weil E, et al.: A comparison of dermatologists' and primary care physicians' accuracy in diagnosing melanoma: a systematic review. Arch Dermatol 137 (12): 1627-34, 2001.
14. Farmer ER, Gonin R, Hanna MP: Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists. Hum Pathol 27 (6): 528-31, 1996.
15. Friedman RJ, Rigel DS, Kopf AW: Early detection of malignant melanoma: the role of physician examination and self-examination of the skin. CA Cancer J Clin 35 (3): 130-51, 1985 May-Jun.
16. Blois MS, Sagebiel RW, Abarbanel RM, et al.: Malignant melanoma of the skin. I. The association of tumor depth and type, and patient sex, age, and site with survival. Cancer 52 (7): 1330-41, 1983.
17. Wolff T, Tai E, Miller T: Screening for skin cancer: an update of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 150 (3): 194-8, 2009.
18. MacKie RM, Hole D: Audit of public education campaign to encourage earlier detection of malignant melanoma. BMJ 304 (6833): 1012-5, 1992.
19. Berwick M, Begg CB, Fine JA, et al.: Screening for cutaneous melanoma by skin self-examination. J Natl Cancer Inst 88 (1): 17-23, 1996.
20. Elwood JM: Skin self-examination and melanoma. J Natl Cancer Inst 88 (1): 3-5, 1996.
21. Aitken JF, Elwood JM, Lowe JB, et al.: A randomised trial of population screening for melanoma. J Med Screen 9 (1): 33-7, 2002.
22. Lowe JB, Ball J, Lynch BM, et al.: Acceptability and feasibility of a community-based screening programme for melanoma in Australia. Health Promot Int 19 (4): 437-44, 2004.
23. Aitken JF, Janda M, Elwood M, et al.: Clinical outcomes from skin screening clinics within a community-based melanoma screening program. J Am Acad Dermatol 54 (1): 105-14, 2006.

Changes to This Summary (03 / 01 / 2013)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Description of the Evidence

Added American Cancer Society as reference 4.

Updated statistics with estimated new cases and deaths for 2013.

This summary is written and maintained by the PDQ Screening and Prevention Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ NCI's Comprehensive Cancer Database pages.

Questions or Comments About This Summary

If you have questions or comments about this summary, please send them to Cancer.gov through the Web site's Contact Form. We can respond only to email messages written in English.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about skin cancer screening. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Screening and Prevention Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

Any comments or questions about the summary content should be submitted to Cancer.gov through the Web site's Contact Form. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Screening and Prevention Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."

The preferred citation for this PDQ summary is:

National Cancer Institute: PDQ® Skin Cancer Screening. Bethesda, MD: National Cancer Institute. Date last modified <MM/DD/YYYY>. Available at: http://cancer.gov/cancertopics/pdq/screening/skin/HealthProfessional. Accessed <MM/DD/YYYY>.

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Coping with Cancer: Financial, Insurance, and Legal Information page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov Web site can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the Web site's Contact Form.

Get More Information From NCI

Call 1-800-4-CANCER

For more information, U.S. residents may call the National Cancer Institute's (NCI's) Cancer Information Service toll-free at 1-800-4-CANCER (1-800-422-6237) Monday through Friday from 8:00 a.m. to 8:00 p.m., Eastern Time. A trained Cancer Information Specialist is available to answer your questions.

Chat online

The NCI's LiveHelp® online chat service provides Internet users with the ability to chat online with an Information Specialist. The service is available from 8:00 a.m. to 11:00 p.m. Eastern time, Monday through Friday. Information Specialists can help Internet users find information on NCI Web sites and answer questions about cancer.

Write to us

For more information from the NCI, please write to this address:

NCI Public Inquiries Office
Suite 3036A
6116 Executive Boulevard, MSC8322
Bethesda, MD 20892-8322

Search the NCI Web site

The NCI Web site provides online access to information on cancer, clinical trials, and other Web sites and organizations that offer support and resources for cancer patients and their families. For a quick search, use the search box in the upper right corner of each Web page. The results for a wide range of search terms will include a list of "Best Bets," editorially chosen Web pages that are most closely related to the search term entered.

There are also many other places to get materials and information about cancer treatment and services. Hospitals in your area may have information about local and regional agencies that have information on finances, getting to and from treatment, receiving care at home, and dealing with problems related to cancer treatment.

Find Publications

The NCI has booklets and other materials for patients, health professionals, and the public. These publications discuss types of cancer, methods of cancer treatment, coping with cancer, and clinical trials. Some publications provide information on tests for cancer, cancer causes and prevention, cancer statistics, and NCI research activities. NCI materials on these and other topics may be ordered online or printed directly from the NCI Publications Locator. These materials can also be ordered by telephone from the Cancer Information Service toll-free at 1-800-4-CANCER (1-800-422-6237).

Last Revised: 2013-03-01

This information does not replace the advice of a doctor. Healthwise, Incorporated disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the Terms of Use. How this information was developed to help you make better health decisions.

Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Healthwise, Incorporated.